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Research on Deterministic Methods of Seismic Source Identification

Report No. 1 - Summary

In order to interpret seismic event discrimination in terms of the
physical properties of the source and to be able to establish new discrimin-
ation techniques we have generalized seismic source models based on relaxation
source theory to include the effects of non-homogeneous initial prestress.
In particular we have considered the effects of strongly concentrated prestress
in the vicinity of the shatter zone produced by an explosion.

The important result from the work so far completed are: (1) the spectra
of P and S waves radiated due to stress relaxation effects can be strongly
peaked, with the nature of the peaking being azimuthally dependent in general
and quite strongly dependent on the size and location of the initial stress
concentration; (2) the corners or peak frequencies of the P and S wave
radiation are different from one another (S lower) and are both shifted to
higher frequencies when the stress concentration is close to the shatter zone.
In addition, the corner or peak frequency value is related to the size of the
stress concentration rather than to the size of the shatter zone; (3) the
pattern of first motions from the tectonic release, when the prestress is
inhomogeneous, is not pure quadrupole with higher order multiples also involved.
The ordinary quadrupolar pattern predicted from a homogeneous prestress can
be strongly distorted when the prestress is concentrated and can be highly
non-quadrupole in form.

Considering both the explosion generated direct compressional wave
field and the field'produced by such tectonic effects together, the consequences
for discrimination and explosion yield determination are:

(1) Short period perturbations in the wave train can be expected to be
very complex due to dependence on stress concentration effects. However,
the perturbations should be small to moderate for the first cycle of
the P wave motion, while being significantly larger for the later part
of the P wave train. Body wave magnitude measured from the first P
wave cycle should, therefore, be minimally perturbed by stress relaxation
effects.
(2) Long period surface wave radiation can be strongly perturbed by
tectonic release effects within the whole measureable low frequency
band (i.e.g, from approximately 5 sec to 60 sec in period). The perturba-
tions in the observed Rayleigh wave forms can be such as to add to,
or subtract from, the explosive generated Rayleigh wave depending on the
orientation and magnitude of the prestress in the vicinity of the explosion.
The magnitude of this effect can be very (unacceptably) large. In those
cases where Love waves are significant, so that tectonic release is
involved, then yield estimation using M can only be made after correction
of the Rayleigh wave measurement using the observed Love wave to deduce
the size and configuration of the tectonic source.

Predictions of the radiated seismic wave field from both explosion and
earthquake models in the regional and teleseismic distance ranges, for
layered, anelastic earth models, have been used to predict entire synthetic



seismograms for purposes of comparisons with observations. Both full wave
asymptotic and locked mode approximation methods are being used. Examples of
synthetics and comparisons to observations in the regional distance range

'1 suggest that most of the seismogram can be understood using current source
and medium models. Some specific applications of this capability have been
directed toward providing an understanding of the large amplitude Pg signals
in the regional distance range, and for studies of regional anleastic char-
acteristics of the earth. The results of these two applications have been
to show that: Pg is comprised of a large number of high modes, which can also
be viewed as a large number of multiple reflections from the "granitic-
basaltic" layer interface in the middle crust; and that the anelastic dissipation
function, or Q, is frequency dependent with the anelastic Q increasing with
increasing frequency, and that the low velocity zone absorption is srongly
variable regionally (and also within particular regions) with the low velocity
zone Q dominating the adsorption along teleseismic paths.



I. Introduction

The objectivesof the research being conducted are to: (1) Develop

methods of seismogram synthesis using mode superposition and related

methods, (2) Finalize the theory for source inversion by modal

decomposition, (3) Determine the anelastic characteristics of the medium

using known source characteristics, (4) Interpret seismic event

discrimination in terms of the physical properties of the source,

(5) Establish seismic event discrimination methods from formal inversion

techniques, and (6) Establish regional discrimination techniques based

upon physical properties of the source.

In this report we describe research results relating to seismogram

synthesis (item (1) above) and the interpretation of seismic event

discrimination in terms of the physical properties of the source

(item (4) above).

II. Seismic Source Modeling

In order to interpret seismic event discrimination in terms of the

physical properties of the source and to be able to establish new

discrimination techniques we have generalized seismic source models

based on relaxation source theory to include the effects of non-homogeneous

initial prestress (Stevens, 1980). In particular, we have considered

the effects of strongly concentrated prestress in the vicinity of the

shatter zone produced by an explosion. This work shows in detail how

the effects of tectonic release can perturb the-normal seismic radiation

from an explosion. The results of this work are included in the Appendix A.



2

The important results from the work so far completed are (1) The

spectra of P and S waves radiated due to stress relaxation effects can

be strongly peaked, with the nature of the peaking being azimuthally

dependent in general and quite strongly dependent on the size and location

of the initial stress concentration, (2) The corners or peak frequencies

of the P and S wave radiation are different from one another (S lower)

and are both shifted to higher frequencies when the stress concentration

is close to the shatter zone. In addition, the corner or peak frequency

value is related to the size of the stress concentration rather than to

the size of the shatter zone, (3) the pattern of first motions from the

tectonic release, when the prestress is inhomogeneous, is not pure

quadrupole~with higher order multipoles also involved. The ordinary

quadrupolar pattern predicted from a homogeneous prestress can be strongly

distorted when the prestress is concentrated and can be highly non-

quadrupole in form.

When the prestress has an average (homogeneous) component value (near

100 bars or so) and a nonhomogeneous component corresponding to local

stress concentrations in the vicinity of explosion produced shatter zone

(with stress levels near several hundred bars) then, for this "expected

prestress environment", one can predict the following consequences for

discrimination and explosive yield estimation:

1. Short period perturbations in the wave train can be expected

to be very complex due to dependence on stress concentration effects.

However, the perturbations should be small to moderate for the

first cycle of the P wave motion, while being significantly larger
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for the later part of the P wave train. Bod7 wave magnitude

measured from the first P wave cycle should, therefore, be

minimally perturbed by stress relaxation effects. Further,

corrections to the first cycle of the P wave for tectonic affects

could conceivably be made for purposes of yield estimation.

2. Long period surface wave radiation is strongly perturbed by

tectonic release effects within the whole measureable low frequency

band (i.e., from approximately 5 sec. to 60 sec. in period). The

perturbations in the observed Rayleigh wave forms can be such as

to add to, or subtract from, the explosive generated Rayleigh

wave depending on the orientation and magnitude of the prestress

in the vicinity of the explosion. The magnitude of this effect

can be very (unacceptably) large. In those cases where Love

waves are significant, so that tectonic release is involved, then

yield estimation using M can only be made after correction of thes

Rayleigh wave measurement using the observed Love wave to deduce

the size and configuration of the tectonic source. Such a

correction would be much more reliable, when spherical shatter zone

induced tectonic release is involved, than it would be if actual

earthquake triggering is involved.

III. Wave Propagation Theory: Synthetic Seismograms

In the course of our development of methods of synthesizing seismo-

grams in the regional and teleseismic distance ranges we have considered

two theoretical approaches; in particular mode superposition using a

"locked mode" approximation method (Harvey, 1980) and the full wave

_ _ _ _
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asymptotic method (e.g. Cormier, 1980). Results from the full wave

theory are described in this report. Ti.e Appendix B provides a detailed

discussion.

The importance of the full wave theory is that it is applicable

at all distance ranges, incorporates sphericity, can be applied to media

models with velocity gradients, is a frequency domain theory and as

one consequence can incorporate frequency dependent anelastic absorption

and scattering, and finally, it is accurate and quite fast computationally.

In our work so far, the theory has been fully developed and coded

for the near and regional distance ranges from a seismic source. It

is now possible to compute complete seismograms produced by rather complex

source models in complex earth models. Programs for this purpose have

been used to predict the radiation from explosion and earthquake models

in the near and teleseismic distance ranges. Examples of these

computations in the near regional distance range are shown in the

Appendix B, along with the full theoretical development of the method.

One application of this capability has been to study the anelastic

properties of the upper mantle with attention to frequency dependence

of the absorption (Lundquist, 1980). In the work to continue we will

use this theoretical modeling capability to further study anelasticity,

but also to study both earthquakes and explosions in both the regional

and teleseismic distance ranges to infer source properties and to define

discrimination methods.



5

References

Stevens, J. (1980) Seismic Radiation from the Sudden Creation of a

Spherical Cavity in an Arbitrarily Prestressed Elastic Medium,

in press, Geophys. J. Roy. Astr. Soc.

Harvey, D. (1980) Seismogram Synthesis Using Normal Mode Superposition:

The Locked Mode Approximation Method, submitted to Geophys. J.

Roy. Astrn. Soc.

Cormier, V. (1980) The Synthesis of Complete Seismograms in an Earth

Model Specified by Radially Inhomogeneous Layers, submitted to

Geophys. J. Roy Astr. Soc.

Lundquist, G. (1980) Constraints on the Absorption Band Model of Q,

in press, Jour. Geophys. Res.

.7

_ _ _ _ _ _ _ -



!: 6

Appendix A

Seismic Radiation from the Sudden Creation of

a Spherical Cavity in an Arbitrarily Prestressed

Elastic Medium

Jeffry L. Stevens



7

Seismic Radiation from the Sudden Creation of a Spherical Cavity in an

Arbitrarily Prestressed Elastic Medium

Summary. We solve the general problem of seis-ic radia:ion from the

sudden creation of a spherical cavity in an arbitrarily prestressed

elastic medium. This problem has direct applicaticn to tectonic release

due to the creation of a shatter zone by large underground explosions.

In addition, however, the problem has essential features in common with

the more general earthquake source. Specifically, it can provide an

understanding of how an inhomogeneous prestress can affect radiated

seismic energy from a tectonic source. The prcblem is solved through

the use of a Green's tensor integral equation in which all quantities

are expressed in terms of vector spherical harronics. 1e obtain an

exact solution and an approximate solution to this proble=. The

approximate solution may be useful for the study of other failure

geometries. The results agree with previous solutions for the case of

pure shear. The case of localized inhomogeneous prestress is examined

in detail. The primary result of the inhomogeneous prestress is the

addition of considerable energy at frequencies above the usual ccrner

frequency. This causes an increase in the corner frequency, a change in

the slope of the spectrum near the corner frequency and in some case

a strong, low frequency, far field spectral peak. Peaked spectra

always exist, however, near the usual quadrupole nodes. Further, the

angular distribution of radiation in general will not be pure quadrupole

in nature. As an example of a strongly inhomogeneous prestress case,

stress concentrations near the source due to a poin: dislocation and a

point center of compression are considered. The rafiated wavefo:-ms

- .
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and spectra then vary greatly with angle, with the spectra peaked

strongly at all azimuths in some cases. For these cases the angular

distribution of first motions is still relatively simple, but can be

deceptive if used to determine a focal mechanism. Because of the

canonical relation of this problem to the more general earthquake

failure problem, it is to be expected that similar stress concentra-

tion effects will occur for earthquakes. Thus, similar changes in corner

frequency due to stress concentration effects could lead to errors in

earthquake source dimension estimates and the related existence of

spectral peaks could lead to errors in seismic moment measurements.



1. Introduction

An earthquake can be considered to result from :'e creation of an

external boundary in a prestressed elastic mediu=. iiilarly, at least

some of the anomalous radiation from an explosion ca- be considered

to result from the creation of a shatter zone in a p:estressed medium.

Here we consider the problem of the sudden creation :f a stress free

surface in an arbitrarily prestressed medium since t-is problem con-

tains many of the essential characteristics of the earthquake and explosion

induced tectonic release problems. In particular it shows clearly

and simply what effects inhomogeneous prestress wfll have on the

observed radiation field We will show that,,problem may be treated as

an initial value problem or, equivalently, as a st-ress pulse problem.

We solve this problem exactly for the case of a Spherical cavity

using vector spherical harmonics in the elastic Gree:'s tensor integral

equation in the frequency domain. The result Is a relatively simple

solution for the radiation field involving not hing mere than the inverse

of a number of two by two matrices and an inverse Fotzier transform.

The solution is valid for any arbitrary homogeneous c7 inhomogeneous

prestress and is valid in the near field or far field. Previous solutions

to spherical source problems have all been obtained f:r uniform stress

fields. Hirasawa and Sato (1963) found an exact solu:ion for the sudden

creation of a spherical cavity in a pure shear stresE field. Randall

(1964a) used a spherical inclusion in which the rnaenia. inside suddenly

underwent a phase change to become the same as the erernal material to

model deep earthquakes. He applied this to a utif'ru compressive

(1964b) and a uniform shear (1966) prestress. Arzbazieau (1968) used
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a growing, propagating, transparent spherical cavrty 4t a uniform shear

field as a model for earthquakes. Minster(1973) reflfed this model.

Burridge and Alterman (1972) found an exact solution fcr a uniformly

growing spherical cavity in a pure shear field. Burridge (1975) used

this solution as a test for Archambeau's (1968, 1972 transparent source

approximation. Koyama et al. (1973) found an exact solution for the sudden

creation of a fluid filled cavity in a pure shear field. Mdnster and

Suteau (1977) examined the relationship between a grc.ing spherical

source and a growing circular dislocation with the s-e growth history.

The case of inhomogeneous prestress is particularly interesting

since almost all previous source models have used the boundary condition

of homogeneous shear or its equivalent. Actual streEs fields in the

earth are likely to be highly inhomogeneous. Arcnamieau (1968, 1972)

attempted to allow for a localized prestress by solvi'ng the static

initial value problem for a homogeneous shear field, u: :hen limiting

the effective source region to be within a radius R for his dynamic

calculations. Snoke (1976) showed that there were prb-ems with this

approximation. Bache and Barker (1978) attempted to -e:ermine stress

variations in the earth during the 1971 San Fernando earthquake by

using a solution for a transparent growing sphere in a-ql-= shear

field, but allowing the magnitude of the stress field to vary during

growth. We find, in an exact calculation, that the ain effect of the

inhomogeneous prestress is appearance of considerable seismic energy at

frequencies greater-than the usual quadrupole corner frequency. A

slightly inhomogeneous prestress results in a nearl.y quadrupole dis-

tribution of radiation, but with anomalous radiation in and near the nodes.
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A stress concentration close to the source results in a dramatic increase

in corner frequency and the appearance of pronounced spectral peaks at

all points of observa:ions. The waveforms produced by a concentrated

prestress are substantially different from those produced by a uniform

prestress. The angular distribution of first notions, however, may or

may not appear to have a quadrupole distribution.

This paper is the first attempt to explicitly calculate the effect

of an inhomogeneous prestress on the spectra and waveforms of a dynamic

seismic source. The spherical cavity problem can be solved exactly and

is the canonical problem which can be used to determine some of the

features of failure in other geometries. The results should be important

to observational seismologists since the corner frequency is often used

-to estimate the size of a seismic source and the results of this study

indicate large variations in the corner frequency as a function of local

prestress inhomogeneity, location, and magnitude. In some cases, for

example, increase in the apparent corner frequency occurs and this can

cause a gross underestimation of source dimensions. Further, the

complexity of the spectrum that can be produced.can make the corner

difficult to define observationally and peaking of the spectrum can

lead to uncertain or erroneous measurements of moment. On the other

hand, the theory given here should prove useful for the study of spatial

variations of stress in the earth.

We are simplifying the seismic source problem in this paper

through the use of instantaneous creation of the failure surface and

through the neglect of any consideration of the material inside the

cavity. In this way we can examine the effect of an inhomogeneous

__A_



stress field on seismic radiation independently of the complexities

of finite rupture velocity and certain boundary effects. The formidable

general problem of failure in a prestressed medium in which the growth

rate is determined by the prestress and the problem is coupled at

the boundary to the material inside the cavity has been discussed in

detail by Archambeau and Minster (1978).
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2. Basic Relations

The problem of the radiation released when a cavity forms in a prestressed

medium is conveniently expressed in terms of a Green's tensor integral

equation. Consider first the cavity of arbitrary shape shown in figure 1.

We assume that the medium is prestressed and that the cavity forms at time

t = 0. The medium is then displaced from equilibrium initially and relaxes

to a new equilibrium state. The displacement field satisfies the elastic

equations:

Lu(x,t) -p2-- u(x,t) - 0 (2.1)

where L*u(x,t) C a u (2.2)
ax ijkk ax -

is the elastic operator. CijkZ is the constitutive tensor for the medium

external to the cavity.

The Green's tensor satisfies the equation:

L'G(x, x ,t,to) - - G(c,x ,t,t ) = - I 6(x-x ) 6Ct-to) (2.3)0, -0 0 t 2  0.

We will solve this problem in the frequency domain with the aid of

vector harmonics. We define the Fourier transform and its inverse:

u() fu(t) e-CJt dt u(t) !fu(w) i dw (2.4)

V~~~2r 
f_ ______
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The transformed displacement field satisfies

A2
Lu(x.,w)+pw u(x,) -0 (2.5)

The transformed Green's tensor satisfies:

L.G(x,x ,w) + pw 2G(x, xo = - 6(x-x) (2.6)

It will prove simpler to use vector notation rather than indicial

notation throughout this paper, and we define the stress operators:

T(u) Cj u T (2.7)
ijktax.k ii

T(G) C -G (2.8)TG -Cijk£ 9 G-

The Green's tensor integral equation for the general case of growing

phase boundaries has been derived by Archambeau and Minster (1978). For

the case of the instantaneous creation of a boundary it reduces to:

(x,t) dt [G.T(u) - u.T(G)].idA

Jo * 00

(2.9)

- at dV°

V o

-0

, .. .. . ... -- ---.-....- -"lrl-l- -....
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The last term contains the effect of the initial conditions. The surface

integral contains the response of the surface. The first term in this integral

will vanish for a stress free surface.

The frequency domain integral equation is:

u(x,W) - .f [u.T(G) - G-T(u)].R dA. -v %% Z 0

(2.10)

+ i ju G dV

where u* u(t=0), the initial displacement from equilibrium. Again the term

containing T(u) vanishes for a stress free surface.

The initial value term in equations (2.9) and (2.10) can be quite difficult

to evaluate. The problem can be made much simpler by defining the "stress

pulse equivalent" to the initial value problem. We use the fact that since

u* is the difference between two static equilibrium fields (the prestressed

state without the cavity and the final equilibrium state)

L-u* = 0 (2.11)

Multiplying this equation by G and multiplying equation (2.6) by u*,

subtracting and integrating overall space external to the cavity and

substituting in equation (210) we find that for a stress free cavity of

arbitrary shape:

u - dA - f G.T(u*).n dA (2.12)

where u' is the relative displacement field

-7i
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u'(x=w) - u(xw) - u*(x)/iw

l(u*) ^n is the traction drop on the cavity surface between

the initial and final state. Since the final tractions are zero for

the stress free cavity, T(u*) . n is just the initial tractions on

the surface due to the existing prestress. Comparing equation(2.12)

with equation (2.10), we see that the initial value problem is equivalent

to a stress pulse equal in magnitude to minus the initial tractions

applied to the cavity surface at time t = 0 . While the relaxation

problem is perhaps more naturally expressed as an initial value problem,

the solution is much easier when expressed as a stress pulse equivalent.
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The infinite space Green's tensor in the freque-c7 domain is given

by Ben-Menahem & Singh (1968) in terms of vector spheriac;1 harmonics:

ik5 2. 2+1 1 (t-r)! -

_ Pt+ E ~~) F, Cr M, (r)Gx,x ). - (+,-,)! =r o ) 01 ,o =i,0 -

(2.13)

+Nm(ro) N 7(r) + X (2+l)(- ) Lm(r) L

where c= sgn (r-r 0 ) and r jIx .

+ + 1=- i x ;= +,
= V x (^ N+ =x

- r a OV k ~ - r k

kk W 8 -

Here c,B are the P, S velocities of the medium

P+ Y eo J£ (kar) I

,£= y 2 .,(,,) 2 ~t :

While is similarly expressed using k

The operation * refers to complex conjugation of :-e angular part

of the function, while the Hankel function remains uzch -=-ed. Explicit

forms for M , N and L are given later (see equa-ic- 3.9) - (3.13)).
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3. Solution for Arbitrary Prestress

By expanding all relevant quantities in terms of vector spherical

harmonics and using the convenient orthogonality properties of these

functions, we can find an exact solution for the radiation field for the

sudden creation of a spherical cavity in an arbitrarily prestressed medium.

We need to solve the equation:

uI1
u u-T(G).n dA + u (3.1)

Here 'n is the outward normal e at the spherical surface.r
I

u may be either the initial value term:

u. =+ iWP u G dV (3.2)

V

where V is the volume external to the sphere, or the stress pulse term:

u~ = 1 *(u*)ndA (3.3)
z

The stress pulse term is easier to evaluate. We will now solve equations

(3.1) and (3.3) for a general stress field.

Any vector function can be expanded in the following way:

U(r,e, ) - 'ja(l)(r) P.(8 , ) + a (2) (r) B. (e,!) (3.4)

+ a(3) (r) Ci_(,

----..- ~ - .2



P B C are vectors defined by (see Morse and Feshbach (1953) or

Ben-Menahem and Singh (1968)):

A

(3.5)

YzL(eo) P (Cos 6) e imo

where P (x)W is the associated Legendre function. These vectors have the

following orthogonality relations:

jmj ' ni . f'rn' d = 0

and (3.6)

fJPm, m &2 Ji9m Btmd' Cf~ CI , dQ = ZL'smm Q

4-- (ZA-r) I

Either by inspection or by using the orthogonality relations we can

expand 0u in the form:
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u (wrO d(6w

(3.7)
+ d , (r,l) B, (e,) + d.3 (r,w)C. (66)

z m 0.% m im -L

We can also expand the unknown displacement field u in the form

u ((. ,r, 8,) b£_*# _bm(r,w) Pm(6,¢)

(3.8)
+ b2m(r,w) B (0,€) + b 3m(r,w) Cm(e

The Green's tensor for this problem is given by equation(2.13). In

terms of the vectors P, B, C we can write (Ben-Menahem and Singh (1968))

+ +

Ntm = gl(y) £im
+ + +

N±= g2(y) P + g3(y) B (3.9)z 2 -PZm 3 'Pim

L+r m g(x) I + g (x) B.Pm 4 L-Pm 5~ Z~m

where y = k r, x = k r. The vector M represents toroidal waves. The

vectors L and N represent P and S spheroidal waves respectively.

We also need the associated tractions

+ +
T(M- )'n = h (Y) C

z -1~m 1l #-Pm

T(N- ). U ( h (Y) P + h3(y) B (3.10)
z-Pm \2 *PZm 3 -ZPm)

T( In uh(hx) P + h ±(x)
-z~ M im 5 -
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where

2+ ___ f_

9. (Y) = (+) Y)
y

3+ ____ i f(Y)
=i (Y) f+ (fY) + -

4+ W f

h 2±(y) 2k .+1) F±(Y

h3+(y) = k VZ(Z+1) F (y)z az (311

h2 Cx) =2k F 4 X (A1y

h~(x a = t 4k (x)TI a~C

hai (2W43 2k 2 (z -.+, F2.+1 (x) Z (z)

++

21) ((2-2) (2-i 3£2~)f (z)

F R 3"z -- 21-) 2 _______) 2,______z

+ 2Z(+2)(Z-1) ± (Z
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F~ 4 z F.(L-i) (2t+3) f±_ (z) + (1+1) (142)(21-1) f± (z
14 (2Z-1X2P.+1) (22A-3) L -2 £42

-(2t+l) 2Z 2 + 2£- 1 + (2-1 -2X3)f
2

where f are spherical Bessel (4) and outgoing Hankel (-) functions.

(There is a misprint in Ben-Menahem and Singh's definition of F 3 which

is corrected here.)

The surface integral in equation (3.1) can now be evaluated. Because

of the orthogonality relations (3.6) the surface integrals give either

R 2 n m or zero. The integral equation has now been reduced to a set of

algebraic equations. In fact, the individual terms in the eigenfunction

expansion are almost completely uncoupled. The remaining equations for each

value of £ are:

b r g (r) bi8  (R R + g' (r) bl (R) h (R)

+g2- W b2 ()h3+ ()+ g4- (r *b2 (R h5+R)+d 1Cr)

2 / (3. 12)

2 - ik~ R 2 - 1 2+ + 5- (r 1 R 4+(R
bZm (r) T £(941) (9 ,(r) bkm (R) ht ZCR) + (r kbmC)h (R

+ C - r) b 2 (R) ht 3CR) + g 5-r) b 2CR) h 5+R(R

3 -ik aR 21- 3 1+3
Cr) = £C+l) £9Z m k 2 k
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(The arguments of the g and h functions are understood to be

multiplied by k or k as defined in equation (3.11)).

We can now evaluate these equations at r = R (the cavity radius)

and have the solution to the problem.

The coefficients of C are uncoupled from the others, so we have
-ik R2  2m

immediately letting t( -

b1 Q i (R) h(R)+ (R) (3.13)

and at any point r

1 3
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The coefficients are coupled for £ + 0. Tine solution for these is

(b 1(R) (A Ai\b~ / 11 R

where =,, 'R) 2+ ' 4-' 42+<
~ Q i (R+ R)h R

2 2 2(3.16)

2- 2+ 4- 4+

A 3- 2+ 5- 4+A21 = gCR) h2 (R) + g5 (R) h2 (R)

322 3(R) h 3+(R) + C5-(R) h 5+(R)

and

b I(R ~ -1 dR

This requires the inversion of only a 2 x 2 matrix. Substitution into

equation (3.12) gives the exact solution to this prozlem.

The case £=0 must be treated separately since B = C 0. Setting

b - 0 we can immediately solve for b 1
OC 00
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d I1 (R)
b I (R) 00

00 )-Q 4-() (R) (3.18)

0 0 0

Qg (r)h (R)d 1R)
booW d (r)+ 00 0-0 (3.19)

1-Qo g4 (R) h 4 + (R)

The factors of L(Z+I) in Q and h cancel.
0 0

Inspection of the solution (equation 3.12) shcws that the displacement

field consists only of outgoing spherical waves. If desired, the solution

can be written:

u xW)a + 8 M N + Y (,-) L.

where the coefficients aRm' atm' Yzm are determined by comparison with

equation (3.12). The first term is a toroidal wave, rhe second a spheroidal

shear wave and the third a spheroidal compressional wa'e.



25

4. Pure Shear

The case of the creation of a spherical failure s-f ace in a pure

shear field has been used as an element in a model fcr e ar-hquakes by

Archambeau (1968) and Randall (1966). Archa-beau (4172) used this as a model

to predict anomalous stress wave radiation from exlcsicr-S. Randall's solution

is equivalent to the stress pulse solution which is used here as the initial

value term. This problem was solved exactly by Eirasawa and Sato (1963).

Their results are reproduced in Koyama et al. (1973). K-yama et al. solved

the problem of the creation of a fluid filled cavity in 7 pure shear field.

They report little difference in the waveforms for :he to cases.

It is possible to do this problem in two ways. An expression for u* is

given by Landau and Lifschitz (1970, p. 24). After some effort it can be shown

that this can be written in terms of vector spherical hazcmnics with only the

coefficients of B2  and m non-zero. The initial value :ntegral (equation
~2 I2m

3.2) can then be performed. This leads to a very messy, expression. It is much

easier to use the stress pulse solution and evaluate equa_:ion (3.3).

T(u*).i is easily found. The initial normal tracticas are sirply those of a
V 1

pure shear stress field resolved onto a spherical surface. The final normal

tractions are zero. So T(u*).n = ain j with c + c,1 + : = 0 for the most

general pure shear field. We need to write these in term of vector spherical

harmonics. After some algebra it can be shown that t:he m:s- general pure

shear field can be written:

j
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2/
T(u*) -n' A (P + !6B(4.1)

- 2m i.2m 2.~2)
I" m--2

where A2m are coefficients determined by the choice of cartesian stress tensor.

In terms of the cartesian components of the shear stress:

1A1
A22 1 2 (Cn - '22) + 6 '12

1 1
A21 3 S '13 31 '23.

(4.2)

A2 0 -
033

A ' -2a +2
2-1 13 + -23

A -2( a2-2 o11 - '22) - 12

Now we can evaluate equation (3.3)

ul = 1 G.T(u).ndA

The non-vanishing part of G is

-ik 0 5 2 (2-rn)! ( ) ) + 6L Lx (4.3)
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Evaluating the surface integral we find

u[ m!2m+ d2m 2  (4.4)

where, using the notation of equation (3.11)

1 R 2 Yo + f6 g 3+(Yo) 2-
d -- g2)(2+m g2 (y) g2 (x)

15+(

+ 6/ g W 1

(4.5)

d2m -6- A2 m 2(Yo) + r6 2  (Yo) g2 (y )

2 g2  ) g2-

x° = kaR x = kar Yo = kaR y = kr

These coefficients can be substituted into ecuaticn (3.17) to obtain the

exact solution to this problem. In the far-field approxi ation g and g

vanish. The solution then corresponds to a radial P vare and a transverse

S wave as it should. The far field P and S spectra for the initial value/

stress pulse (eq. 4.4) solution and the exact solution are shown in

figure 2. The initial value spectrum contains a large -u-ber of dips not

present in the exact solution. Burridge (1975) pointed out that these dips

result from the stress discontinuity at the end of the .-:-Ise. This is a
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consequence of the fact that without the inclusion of the surface term

(eq. 3.1) there are in effect no boundaries in the medium. All disturbances

are then propagated at the corresponding velocity of the medium. The resulting

pulses will have a duration equal to the travel time across the cavity. The

farfield P and S waveforms are shown in figure 3 for both the initial value

and exact solutions. The solution agrees exactly with the solution of

Hirasawa and Sato (1963). Their spectra-and waveforms are reproduced in

Koyama et al. (1973) and match figures 2 and 3.
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5. Radiation from Non-Uniform Stress Fields

We want to consider the radiation from a stress free sphere

spontaneously created in an arbitrarily prestressed elastic medium.

This should be a good model for predicting the teztcnic release from

explosions. It should also be a good model for the study of spontaneous

failure in an inhomogeneous stress field. Minster and Suteau (1977)

have examined the question of failure geometry in scme detail. The

main differences betweenthe planar source and the spherical source is

that for the planar source the amplitude is reduced by a factor of 3

and the waveform is smeared out over a longer period of time due to

interference of spherical waves leaving different parts of the surface

at different times. This smearing effect can also be seen in the numerical

results of Madariaga (1976). While we do not expect exact agreement

between the radiation produced by an earthquake and radiation produced

by a spherical cavity, the cavity can provide information on general

features such as the angular distribution and approximate waveforms.

Since the spherical cavity problem is exactly solvable, it provides a

useful tool for the investigation of the general problem of failure

in an inhomogeneous stress field.

The first question to be answered is the nature of different kinds

of prestress which are physically acceptable. Any region of the earth,

especially seismically active regions will contaii many dislocations.

These dislocations will act like some complicated distribution of

(equivalent) static.body forces in the medium. The initial field
i =- f =

satisfies L • f and the final field satisfies L . u = f , so
'U - -,,i -%-

the difference field satisfies L . u* = 0 , the sta:ic elastic equation

- - .. . . .. . . .Il l |
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with no body forces acting. This difference field nrrust be finite at

infinity. Siie we are interested in the region outside r - R , the

solution representation need not be finite at r = 0 . The rost general

static displacement field satisfying these conditions can be expressed

in terms of the following eigenvectors (Ben-Menahe= and Singh, 1968):

N - = r-z- 2 [/i .(E+1) B - (Z+l) P ]

F M r -1 [(y-) A(Z+i) B + (Y +2 z- 1)z. ] (5.1)

M = r- vi (Z+1) C

where
y =4(1-o) = 2 2

Y 2 S2
a -

The displacement field is then

u*(r) = Ea N + M F +f M (5.2)2.m im Fz Xi 2. m m 5.-2

We are now in a position to compute the radiation field. The easiest

way to do this is, again, to use the stress pulse solution

u u" dA + u
"- (5. 3)
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where

1 1 $ * ^i
u - G • u •dA (5.4)

We need to compute T(u ) e for u give .. i-e. ion 5.2. The

stress field is given in spherical coordinates by:

aur

r- r ae -- [ -V - + I(- - -u e)

au I a
= au+ s-- (aur- sine u,)" (5.5)

where

au i auo au¢ ct"r
r E+_ + 2 u)+ I + --lrt

or r r rsinO r

We consider any function of the form:

u(r,e,o) = [fi (r) Pi + f2 (r) B (I -± + (r) ,C(,4) (5.6)

Using the expressions for P , B and C (equatiozs 3.5) and the equation

for Y (e, )

+ cote2  C 1 +. (5.7)

2a sine3 ISB
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we have after some algebra:

'fltm 2flkm f2m) flm] e,e= r r r ri-(£+l) + 211 r
km

+ f2Zm + /fl) f27-) Bmm(O,2)Br e+,T r r )"z~eo

f3 Um. f 3m) 
(5+ ( 3r r -'m

comparing with expression (5.2) we find

T5* er - 1- 3 [2 ( Z(+2)]

ear  r 2p(+l) +

km

+ C9m r [(y+.-l) (AI-2 Z2 (A+))) + I£(k+i)(2k-i)]

Y

+.'(£+i) B m(8,4) a m r 2i(-(Z+2))

+ km r-L- 1 (2k2_y)

+ CT i 'Zm(6 0 ) {f m r 1 (Y+2)), (5.9)

Comparing this with results from the last section, we find that pure shear

corresponds to

6 R2
2m 2m

(5.10)

C2m y k 2m
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where k are constants depending on the stress =a-tufe and orientation.
2m

Using the Green's tensor (eq. 2.13) for r > r wi- ro = R, and using
C 0

the notation of equations (3.11), we can now evaluate equz::in (5.4) for the

most general initial stress field, we have:

uI =-R 1al (+)L (5.11)
gl=0R C=-,A

f gl-(ksr) s1(R) g+ (k R) C 98(k0

a m 2  g£ k s R) g R) Pz (IE,)

+ c 2- (k r) s9 3 (R) g2 (k R)+ s 5 (R) g3+(k R) ",

+ a -g3-(k r) s£2 (R) g2 (k R) + s(R) g3 (k.R) ?

+ C 3- (k r) s£(R) 2+ (k R) + s£(R) g3+ (*k ?) 3£"-)

3- 2+ 3+ ZR
+ cm g (k3r) () g ( R) ( + R) g, (k )

+a 9 g~ g4(kar) 9.(£2+i )3 [si3(R) g£(keR) + Ss,(E)= (R)Pm,€
+ -g4+ (k R) + s. -(R.) :' P(e,)

Ckm g9. (k ar) 9.(9.+1) [s(') z4+Xk

+am g (k r) Z(Z+i) y s£2 (R) g£ (kR) + s ,(a) (k R) B (9,)

+ am g -(k r) k(t+i) 3 g (k R) +. sL(R) 7 (kR) B m(e,)

k__kaISk2_iJA



34

where the static s functions are given by:

S-(9,+2) q _(t+1)

2u(Z+l) (9+2)

R

=(y+i-)(l£.-2i2 (X+)) + Xi(i+I)(2i-i)s£Z3  y R Z-1
(5.12)

S4=- 2i (+2){Z(2.+I)
sZ4 = R+l

Ri~

2
= M(2_2-y)A(+l)sZ5 R RZ-1

This is the initial value field corresponding to a stress pulse applied

at r = R at time t=O in an infinite medium. The first term in this expression

corresponds to a toroidal shear wave. The next four terms corresponds to

a spheroidal shear wave and the last four terms correspond to a compressional

2- 5-
wave. In the farfield g. = g£ = 0. Then the remaining terms correspond

to a pure radial P-wave and a pure transverse S wave. The coefficients of

B1and C correspond to d d2 an d3 in equations (3.14) and (3.17).

Thus, (5.11) determines the complete solution for the radiation field due to

creation of a spherical cavity with the most general prestress.

The coefficients a k, ckm , and f m are independent until a specific

prestress is defined. These coefficients depend on the static field only

and are independent of frequency. There will therefore be three independent

waves - a toroidal wave and two spheroidal waves for each value of Z. The

spectra for k = 2 are shown in figure 4. The two spheroidal waves corresponding

to coefficients am, cmk are labeled P1, SVl, and P2, SV2, respectively. The



35

toroidal mode is labeled SH. It is interesting to note that the t - 2

modes consist partially of peaked spectra and partly of spectra which are

flat in the low frequency limit. The linear combination of these (eq. 5.10)

that corresponds to pure shear has a flat spectrum.

The X = 2 waveforms are shown in Figure 5. These look much different

than the waveforms for pure shear, but in fact the linear combination of these

given in equation (5.10) is the pure shear pulse.

The waveforms for higher Z values have more and more oscillations.

An example is given in Figure 6 for the I = 4 waveforms. The result of this

is that the spectra become more and more peaked for higher order Z values

and the maximum frequency increases slightly for each increment in 2. The

slope of each peak as w - 0 increases with 2. The slope of each spectrum as

w w is -2 for all X. Figure 7 shows the individual P1 spectra for L - 3,

4, 5 and 6. The magnitude of these peaks will vary with angle as the

corresponding vector spherical harmonic. It will therefore vary more rapidly

with angle than pure shear.

These results shed some light on the old argument about low frequency

spectral peaks in relaxation problems. Archambeau (1968) solved the problem

for the radiation from a spherical cavity in pure shear, but he made an

approximation for a more localized stress field by truncating the volume

integral (similar to equation 3.2) at a radius Rs . This always leads to a low

frequency spectral peak in the far field. Minster (1973) discussed this

problem in some detail.. Snoke (1976) showed that this approximation leads

to acausal results in the time domain and concluded that the approximation

was incorrect and that the spectral peaks were therefore spurious. Our

results are somewhat different from those of Archambeau's Rs spectral

peak. That approximation removed energy from the low frequency part of the
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spectrum at wavelengths greater than R . Our results show that a spectralS

peak can in fact exist, but the effect is to add in additional energy at

frequencies slightly above the "corner frequency" defined by the pure shear

spectrum. Also, the magnizude of the spectral peak will vary with angle.

If the prestress is predominantly pure shear, then a spectral peak will be

observed only near the quadrupole nodes. If the stress were more inhomogeneous

then the peak can be observed at all angles of observation. Examples of

this are given in the next section. There have been a number of bbservations

of spectral peaks from earthquakes and explosions-(e.g., Linde and Sacks,

1971) and an-inhomogeneous prestress is a likely reason for this.

Also shown in figures 4, 5 and 6 are the waveforms and spectra for the

relaxation/stress pulse term (eq. 5.11) alone. Physically, the stress pulse

term corresponds to a sudden stress equal in magnitude to minus the initial

prestress on a spherical surface in an infinite medium. Thus scattering

diffraction by the cavity are neglected and the stress pulse is rapidly

radiated away. The stress pulse term is a fairly good approximation to the

exact solution, especially near the beginning of the pulse. The main

differences are that the stress pulse term is smaller in amplitude and stops

abruptly at t = 2R/v. The exact waveform looks like a stretched out version

of the stress pulse term. The spectra contain many dips not present in the

exact solution. These are due to the abrupt end to the waveform. These are

the same features found by Burridge (1975) when he compared his exact solution

for a growing spherical cavity in a pure shear field against Archambeau's

"transparent source approximation" to the same problem. Use of the stress

pulse term alone is similar to the transparent source approximation, but has

some advantages. The transparent source required the solution of the static

problem before the dynamic problem could be done. Minster (1973) attempted to
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use the transparent source approximation for an ellipsoidal rupture, but found

the static problem extremely difficult. Also, Archambeau's use of potentials

have some singular properties which lead to difficulties in other problems

than the case of pure shear he considered. In particular, for the case of

a pure compressive stress field, the method gives no radiation. The stress

pulse term, on the other hand, is easily evaluated for any geometry. It

simply requires doing the surface integral (eq. (3.3)) on an ellipsoidal

surface or other surface of interest. It is singular in the limiting case

of the dislocation (a flat surface), but can be performed for any surface

enclosing a finite volume.
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6. Preexisting localized stress fields

In this section we want to examine two physically plausible prestress

fields. The first is due to a point source of compression, the second due

to a point dislocation. An interesting fact is that both of these stress

concentrations look like uniform static shear field when far away from the

cavity, but have some anomalous features when nearby.

The simplest inhomogeneous prestress field is due to a point source of

compression. Consider a spherical region in the earth which has expanded or

contracted. The displacement about the center of the sphere is spherically

symmetric and is given outside the spherical region by:

u C A '71r = c - r (6.1)

where c is a constant depending on the magnitude of the contraction.

We now consider the seismic radiation when a spherical cavity forms

somewhere outside the center of compression. The coordinates are shown in

figure 8. To translate the displacement field from the center of compression

to the center of the sphere we use the well known expansion of 1/r in

spherical harmonics.

1 Rg
= (Cos e) R < L (6.2)

Taking the gradient of this expression, rewriting in terms of vector

spherical harmonics and using equation (5.8) to compute the normal tractions,

we find
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~ = ijc R tO (6.3))T(u )L2'(e'-) PA0 (e) + (1-1) At B0(e) (6.3)r" 1=2L l 0t

Note that for L >> R

T(u)" = p ( 6  (e) 1 (6.4)
:: r L 3 L20(0  2 2O

which was shown in section 4 to be a pure shear stress field, as noted earlier.

It only remains to compute the coefficients of u*. The actual static

displacement field cannot be expanded as in the last section, but the difference

field 9* can. We can determine the coefficients atm, c2 m by comparison of

equation (6.3) with equation (5.9)

For L >> R, the spectra and waveforms are identical to figures 2 and 3.

Some interesting features appear when the cavity is closer to the stress con-

centration. Figure 9 shows the spectra And waveforms near the quadrupole nodes

when L = 2R. Instead of vanishing at these angles, the amplitude is reduced

by about a factor of 3. The spectra of both the P and S waves are sharply

peaked. At angles away from the nodes, the spectra are flat. As the source

is moved still closer to the cavity, the spectra change dramatically. Figure

10 show the spectra near the quadrupole maxima when the stress concentration

is .1 radius from the cavity surface. The corner frequency is increased by

an order of magnitude. The slope above the corner frequency is also changed.

The corner frequency is no longer a measure of the size of a cavity. Instead,

it is a measure of the area of high stress on the cavity surface. An important

and interesting fact is thatffrom observations of first motions only, the

radiation pattern appears to be very nearly that of a quadrupole source

although the waveforms and spectra vary greatly with angle (see Figure 12).

i



40

As a second example we consider a prestress due to a point dislocation

located at r = L. The coordinate system is the same as that shown in

Figure 8. The initial stress field and the spectra and waveforms are

considerably more complicated than for the point source of compression, but

the main effects are the same.

The displacement field due to a dislocation is given by the Volterra

relation (e.g. Steketee, 1958)

U -s u(x )T(G(x,x )).n dA (6.5)J d VJ '0 o~ -.0 0

where the integral is over the surface of the dislocation and G is the static

elastic Green's tensor. Since we consider only a point Green's tensor, the

integral becomes:

u(x) = S.T(G)-n (6.6)

where S is the slip vector S = AuAA. The dot products with n and S are

interchangeable. The static Green's tensor is given by Ben-Menahem and Singh

(1968) and can be written for lxi < xiEo:

2. F +
G(x,x ) = [- i %o

A,_ __ _ _ %u. .o (E M) LZo 1 (6.7)

N + F*_ (x F +(x) N2 . (xX (21-1 + +
2. (22.-i) (£.+l) (224+3)J

______ ______
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The vectors indexed with a minus are the same as those in equation (5.1).

The remaining eigenvectors are:

N+ L -1___

N r [,/F(2+l) B + L P1

F+ " r (6.8)
F -r - (t+l+y) r.'+) B - (y-L-2) (i+l)

+ - r /L(t+i) C,'v~m

If we restrict the problem so that either the slip vector S or the normal nA
'S

is in the direction of the radial vector er, we can use equations (5.8) for the

stress derivatives. We take the slip direction to be radial, take S S J, and

for convenience take the normal vector to be ee. Then

u(x) - S(T(G).4 )'48 (6.9)
ez r

Most of the terms vanish when the point dislocation is located at e,€ =0.

Ben-Menahem and Singh show that in this limit

A,P - 6 e
'tm om r

A,-i+i Bm " * '(i+ 1 ) di - 6-1m eBlm -lm

+2{£(+l) dlm d-1m (6.10)

/I (1+l) C m z o{(L+) alm + 6_-.} e

- .l{£(+l) 6 lm - le
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After some tedious but straightforward calculations, we find that the

( stress field at the surface of the cavity is:

R 4j =2 2iL) 3 L VIL (+1)

-2yk (21-1) L

4+)1p + ort(1+1) B 1 ] (6.11)

+ (1 2) 2 ' (+)

y (1+1) (2k+3) L 3\I\ 1 OpVI1+s2(t+)A

where

s X~ (1+1) (2-y) (2k+3) + 2V (L+2-y) (1+1) 2

= 2 u(2(k+l) 2 y

* For L >>R the only remaining term is

T-6) Ar B11B 6 (St 6 B (6.12

r L 3~L 2.-l 2 (6.12)
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which is pure shear field as shown in section 4.

Comparing equation (6.11) with equation (5.9), we can solve for the

unknown coefficients am c km' f " We then use equation (5.11) for

the initial value field and use the technique for section 3 to find the

exact radiation field.

The results are shin in figure 11 for a dislocation located at

L = 1.5R, one half radius from the cavity surface. Both the P and S

spectra are peaked at all angles. There is a large variation in the slope

above the "corner frequency' The pulse is very sharp on the side of the

sphere closest to the stress concentration. It is very broad on the other

side. The dislocation causes a region of high, nonuniform stress on the

closest part of the cavity. This acts as the source of the radiation.

The pulses are widest where diffraction is most obvious, on the far side

of the cavity. The relaxation/stress pulse term alone matches the exact

waveform very well (except for the diffracted arrival) for angles less

than 900, but rather poorly at larger angles. This is to be expected

since the surface term which is neglected in that approximation includes

the effects of diffraction. An interesting feature of the waveforms is

the second arrival seen at low angles. This is a diffracted wave which

has travelled around the cavity and back again. An analysis of the first

motions shows a relatively simple angular distribution. The distribution

is nearly quadrupole for L > 2R. For smaller distances, the angular

distribution is more complex (see figure 12). Note that the first motion

for angles greater than 90* has actually reversed direction. The dis-

tribution is still relatively simple and could easily be misinterpreted as

a quadrupole distribution with a finite number of observation points.
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Conclusion

We have developed a general method for computing the radiation due to

the instantaneous creation of a spherical cavity in an arbitrarily prestressed

medium. Vector spherical harmonics were found to be convenient for solving

the Green's tensor integral equation in the frequency domain. Transforming

the initial value problem to a boundary value (stress pulse) problem proves

to be a great simplification and provides an approximate solution as well as

an exact solution. The approximate solution is valid when diffraction by the

source is not too important. For the case of pure shear, the results of

this technique agree with previous solutions.

We have examined the case of inhomogeneous prestress in both a general

manner and for the specific cases of a nearby point source of compression

and a .dislocation. Localized stress concentrations result in:

1. The appearance of energy above the usual corner frequency. This

can increase the corner frequency substantially.

2. Far field spectra peaks. These exist near the quadrupole nodes for

a slightly inhomogeneous prestress and at all angles for a very

localized stress concentration.

3. Non-zero amplitude at the quadrupole nodes.

4. The creation of a diffracted wave which travels around the cavity.

5. A radiation pattern which may or may not appear to be quadrupole

in nature but is generally less complex than the change in

waveforms and spectra.

6. A sharp wave'on the side of the cavity nearest the stress concen-

tration and a broad, more complex wave on the other side.
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The results given here may be useful in observational studies since it has

implications for both earthquakes and explosion induced tectonic release.

In particular, the corner frequency is often used as a measure of the size of

the source R = v/w where R is the cavity radius or fault length depending

A
on the type of source being studie& and v is the wave velocity. For localized

stress concentrations, the corner frequency seems to give an estimate of the

size of the stress concentration which may be much smaller than the source

dimension. Further, the existence of spectral peaks could lead to errors in

estimates of seismic moments. The seismic moment is defined by M - uA where

p is the shear modulus, u is the mean displacement and A is the surface

area of the ult. It is also proportional to the zero frequency far field

spectral amplitude (e.g., Kostrov (1974)). If observations are made of

spectra only close to the corner frequency, the apparent low frequency amplitude

could be much higher than the actual zero frequency amplitude leading to

overestimates of seismic moment. This could lead to misinterpretation

involving not only fault length, but stress drops as well. In addition to

these problems, great care must be taken to remove the effects of the source

when doing studies of earth structure since the variation of pulse shape

with ("take-off") angle could cause confusion between the effect of earth

structure and the effect of localized stress fields.

On the other hand, these results should make it possible to study the

local stress variations in the earth. The techniques used in section 5 can

be used to invert for the stress (difference) field after an explosion. If a

large earthquake is to occur in some region, it means that a large stress

concentration has developed which is not relieved by small earthquakes nearby.

Observations of a change in the waveforms and spectra of small earthquakes in

& -i
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an area could indicate a developing stress concentration. Such an observation

was made recently by Zolljqg (1979), who reported a change in the high frequency

-1
slope of the spectra of small earthquakes in Missouri from w before a

-2
large earthquake to w after the earthquake. He also reported a variation

of the slope with qg)muth. This is the sort of behavior that is to be expected

if a local stress concentration is relieved by the large earthquake. In

addition to this, observations of the features described in this paper in

the variation of spectra and waveforms with angle could be used to identify the

location of developing stress concentrations.

____________________
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Figure Captions.

Fig. 1. The problem considered here. A cavity suddenly forms in a prestressed

medium. The radiation due to the relaxation of the stressed material

can be computed using a Green's tensor integral equation with the

aid of vector harmonics appropriate for the cavity geometry.

Fig. 2. Far field P and S wave spectra for a uniform shear field. The first

figures show the spectra for the stress pulse term alone. The

second are the exact solutions. The dips in the spectra are removed.

The frequency is in units of wR/V. All examples in this paper use

a = 8 km/sec, a = 5 km/sec.

Fig. 3. Far fieldpulse due to the creation of a stress free sphere in a

uniform shear field. The exact solutions agree with the solutions

of Hirasawa and Sato.

Fig. 4. The most general I = 2 mode radiation consists of three independent

waves-two coupled P and S waves labeled P1, SV and P2, SV2 and an

uncoupled S wave labeled SH. The spectra for the Z = 2 modes are

shown here. Two modes are flat and three are peaked. All higher

modes (P > 2) have peaked spectra.

Fig. 5. Waveforms for general k = 2 case. A particular linear combination

of these produces the pure shear waveforms shown in Figure 3. The

second column shows waveforms using the stress pulse term alone. The

exact solution is a stretched out version of the approximate solution.

Fig. 6. Waveform for 2. 4. All higher Z modes are oscillatory. The

number of oscillations increases with Z.
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Fig. 7. The effect of an inhomogeneous prestress is to add in energy at

frequencies higher than the usual corner frequency corresponding

to uniform shear. Shown here are the spectra of the far-field

first P-wave for Z = 3 to k = 6 and the pure shear spectrum for

comparison. A sufficiently inhomogeneous prestress can result in

a low frequency spectral peak which varies in magnitude with

angle.

Fig. 8. Coordinate system used when a cavity is created near a preexisting

center of compression.

Fig. 9. Far field radiation near the quadrupole nodes. When the center of

compression is located one radins away from the cavity, the radiation

field is much like a pure shear field. Near the quadrupole nodes

however, there is a substantial difference. The displacement does

not vanish. It is reduced from the maximum by about a factor of 3.

The pulse is oscillatory and the spectrum is peaked.

Fig. 10. Far field spectra near quadrupole maxima. The spectrum is strongly

affected by the location of the stress concentration. Note the

increase in corner frequency and the change in slope near the corner.

Fig. 11. Radiation field from spherical cavity created one-half radius from

a point dislocation. Shown here are the far field spectra and

waveforms as a function of angle around the cavity. The spectra are

all strongly peaked. The waveforms are narrow on the side of the

sphere near the stress concentration, broad on the other side. The

second arrival seen on the first three shear waves is a diffracted

phase which has travelled around the cavity.
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Fig. "2. First motions for localized prestress fields. For L > 2R , the

first motions are very nearly quadrupole in nature. At closer

distances, the patterns shift. For the center of compression, there

is simply a change in the "nodal" angles. For the dislocation

a pulse directed opposite to the quadrupole pulse gradually becomes

prominent at large angles. The angular distribution of first motions

is less complex than the angular variation of spectra and waveforms.
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Appendix B

The Synthesis of Complete Seismograms

In an Earth Model Specified by Radially

Inhomogeneous Layers
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ABSTRACT

Traditional methods of synthesizing seismograms in the near

or regional distance range (0 to 500 km.) describe the earth model

with planar homogeneous layers. In the high frequency band (.2 -

10 Hz.), in which the seismic ground motion is primarily observed,

uniformly asymptotic solutions to the depth eigenfunctions can

instead allow a radially symmetric earth model to be described

by inhomogeneous spherical layers. Ground displacement u is cal-

culated in the frequency domain by

u(W,4 ,) = J M(w,p,O,A)f(w,p)dp

where r is a contour in the complex ray parameter (p) plane, and

M(w,p,4,A) a point representation of the earthquake or explosion

source including the effect of horizontal propagation to L.

The response of the earth model f(w,p), calculated from the

propagator matrix equation for a source in a radially inhomo-

geneous sphere, includes all possible body and surface waves. Airy

functions are chosen to define the inhomogeneous layer matrices.

Numerical difficulties usually encountered in the calculation

of f(w,p) in layered media are avoided by the calculation of sub-

determinants of the fundamental matrix solution and by the de-

composition of the propagator matrix in a layer into a sum

of matrices of differing numerical order whenever the Airy functions

behave exponentially. The contour integral can be evaluated

by the residue theorem or by numerical integration, the time domain

response obtained by fast Fourier transform. Most applications

require an earth model to be described by no more than four to

five inhomogeneous layers.

pwong
Text Box
preceding page blank - not filmed
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INTRODUCTION

At teleseismic distances in the frequency'band (0.2 - 10 Hz.),

surface and direct body waves are sufficiently separated in time

that either may independently be used to extract source and struc-

tural properties. In the distance range 0 to 500 km., however,

a complete or much larger set of seismic waves must be employed

to properly predict ground motion in even a small time window.

Although complicating the problem of waveform synthesis, the short-

er signal duration offers an opportunity with high frequency

recordings for resolving finer structural details and near field

source properties impossible with longer period teleseismic re-

cordings.

At sufficiently high frequencies asymptotic solutions for

the radial or depth eigenfunctions accurately approximate the exact

solutions for radially inhomogeneous layers even with relatively

severe velocity gradients. Formalisms developed by Langer (1932,

1949), Olver (1954), and Wasow (1965) can be employed to obtain

asymptotic solutions (in frequency) to either the radial component

of seismic potentials (Richards, 1976) or to the radial vector-

matrix equations of seismic motion (Chapman, 1975; Woodhouse,

1978). Such solutions allow a much simpler description of com-

plicated earth models by a small number of radially inhomogeneous

layers. By their validity at high frequency these solutions are

particularly suited to applications in the frequency band in which

near and regional seismic ground motion is primarily observed and

interpreted. Compared to a model specified by planar homogeneous

layers, a model specified by radially inhomogeneous layers will

usually require many fewer mathematical operations to construct

its frequency-ray parameter response. This objective is met

in the following sections by detailing a procedure for synthe-

sizing complete seismograms in such an earth model. The pro-

cedure combines (1) the zeroth order (in frequency) asymptotic

solutions to the propagator and fundamental matrix, (2) the
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notation of generalized vertical slownesses or cosines de-
veloped by Richards (1976), and (3) the vector-matrix methods

of Abo-Zena (1979) for avoiding the numerical difficulties in
calculating the response of a layered medium. The THEORY

section of the paper develops notation and the generalized

solution for displacement. The reader primarily interested in

developing practical numerical codes may proceed directly to the
section titled EXAMPLE USES OF GENERAL SOLUTION FORM, referring

as needed to the sections EVALUATION OF PROPAGATOR PRODUCTS,

THEORY, and Appendices A and B.

THEORY

General Solution Form

By applying the vector representation theorem for a sphere,

the seismic displacement vector u = urr + u, e = u,± may be

written as

i t  o n m m mu(r,e,4,t) = dweZ Z (UP + %B + WC ) (i)
- n=0 m=-n n n

m m m
where P , B , and C are vector spherical harmonics defined by

n -n n

m m
P = rY (8,f)

n n

B = Y (e,)/[n(n + 1)] (2a)
-n n
m mr

C = -rxVY (e, )/[n(n + i)]
n n

(V= + 4 cosec8 ).

m m m
Here the P , B , and C are fully normalized:

-n -n -
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m 2n+l (n-m)!] ~ m (2b)
Y (In) =K (-) [ - n ) P (cos)e (2b)

0 n n

The radial eigenfunctions, U, V, and W satisfy vector-matrix

equations ofl the form

S y = wA. + w A, + A2 )V (4)

for SH type body waves and toroidal free oscillations, and

o S S + _AS+w AS )vS (5)a =1 =n' in2dv

=00 -n_-n

for P-SV type body waves and spheroidal free oscillations (e.g.,

Chapman, 1973). When gravitational effects can be ignored,

the displacement-stress vectors an v are defed

TW = - [V] (6)

where the radial stress functions, T, R, and S are defined in

terms of U, V, and W by Alterman et al. (1959). Here and later,

quantities written vertically within brackets denote a column

vector and quantities written horizontally and separated by

commas denote a row vector.

A matrix F satisfying either (4) or (5) in the column

vectors t v is defined as a fundamental matrix (Gilberand

Backus, 1966) or matricant (Gantmacher, 19e ). As shown by

T S

Giler andpl acntsus 16),er fundvamea matricesd fths

terms ~~ of ... n . by A.ra et .l .15) Her .n laer



I
" 71

equations allow a convenient and notationail! c~mpact method

of satisfying the boundary conditions at layers cf an earth

model having discontinuities in elastic mod".ui And/or density.

The stress displacement vector v at a radius "a" is related to

that at a radius rn through a product of propagator matrices

K. constructed from the fundamental matrices f. fcr each i-th

layer:

v(a) = K(a,rn )v(r) = K ... Kn- (r ), (7)

-1

where K.(ri 1 , ri) = Fi(ri9). (ri) (8)

with ri and ri denoting the radii bounding the top and

bottom boundaries of the i-th layer respectively. Figure 1

illustrates the layering scheme and conventicns used for indices.

The general solution to (4) or (5) for the displacement-

stress vector v, including the effects of a source vector

term y, can be written as

v(a) = E(a,r,)v(r ) + f (a,C)v ()d (9)
0

where r0 is some reference radius at which a sterting solution

v(r 0) is defined (Wasow, 1965). The complete displacement solu-

tion can then be obtained by substituting the results for U,V,

and W determined from (9) into the displacement representation

given by (1).

Fundamental Matrices of Radially Inhomogeneous lavers

The basic form of solution for the dis=1acezrment-stress

vector given by (9) is independent of any representation of the

earth model, e.g., planar homogeneous layers, szherical inhomo-

geneous layers, etc. Assume now that the ear-th model is speci-

fied by radially inhomogeneous layers and ap~l" the zeroth order

uniformly asymptotic solutions to the fundamental matrix and

propagator of such layers. Adopting the ncta=irn and solutions
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given by Aki and Richards (1980), or-ittinc source normalization,

and rearranging rows and colunLns to agree with -he stress-

displacement vector used by Woodhouse (1978: *ives

Fr3)(1) ( h - 1) (3)

r -7Ag -iAg r h
' (1) \ (') ,!. (3)

L-Bg Bg 

(!0a)

(3) (3) ( 3) -)
-iAg Bg -Eg -ir pg (

F(r) = iAg ( 1 ) I  ir pg
-: (3)

-iBh ( 3 )  Ah ( 3 )  -r .h
- 1.. (j) ( )

L-iBih ( I )  -Ah ( I )  r% (1) i1

(10b)

for P-SV waves where A=2r-2p2-p, B=2r- p,i/T, u is the shear

modulus profile p (r) and p the density profil:e p0r); and

r)= r- /1 (1) _U h 3) (la)

;-i h (3) -2 (3) 3

F (r) = h (1) -5h(1) (llb)

fo S wve (1) g(3) h(1) h(3)
fo ,H waes , are generalizer: radial

eigenfunctions defined in terms of Airy functions (see Appendix).

n are generalized vertical slownesses defined with

the generalized radial eigenfunctions by

= ,(1) Z' = - g ' (3)

(12)

Sh'(i ,= - ' ( )

wih(i) ih(

4-
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The ray parameter p in the fundamental matrices can be

associated with the degree n of the vector spherical harmonics

in equation (1) by

p = (n + )/w. (13)

Functions analytic in radius specify the seisnic velocity

behavior in all layers. Appendix A outlines and references

methods of fast evaluation of the radial eicenfunctions and

generalized vertical slownesses in such profiles.

The fundamental matrices may be defined using any one of

several different pairs of linearly independent Airy functions.

The pair Ai(-z) and Bi(-z) chosen by Woodhouse (1978) represent

standing waves that exponentially decay or grow with increasing

depth below a ray turning point. The pair Ai(-ze 27/ 3 ) and

Ai(-z - i 27/ 3 ) chosen by Richards (1976) represent up- or down-

going travelling waves. The intermediate choice of Ai(-ze
i 2r/ 3

and Ai(-z) still allows identification of travelling waves

within a single layer, but, as will be shown in a later section,

avoids a numerical problem in the computation of the response

of a layered model. The superscript (1) in equations (10a-12)

refers to the use of Airy function appropriate for upgoing

travelling waves, Ai(-zi27/3). The individual layer propagator27/ -i 27/3

Ki defined using the set Ai(-ze'2 /3) Ai(-ze ) equals that

defined using the set Ai(-zei21/ 3), Ai(-z). Thus, provided

the propagator within a layer is formed by (8), the superscript

(3) can refer to either the use of Ai(-ze- ' / ) or the use

of Ai(-z) when convenient.

Boundary Conditions

The propagator formalism satisfies boundary conditions on

stress and displacement components at each layer interface. The

only remaining boundary conditions are the vanishing of stress

at the free surface and a radiation conditicn in the lowermost

layer. For a sphere of radius "a" the free surface condition
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recuires that R(a)=S(a)=T(a)=O. Two possible bc-andary conditions

may be invoked in the last layer. (1) The last laver possesses

only standing waves that exponentially decay wit-h increasing

depth below their turning points. (2) If it is desired to

exclude any waves from propagating in the last layer fron. the

solution at the free surface, the last layer must possess only

downward propagating waves. Henceforth the term "decay"

will refer to boundary condition (1) amd "r eflectivity" to

boundary condition (2). With these boundary conditions and

when the superscript (3) refers to the Airy function Ai(-z),

the stress-displacement vector for P-SV waves has the fori

v(r0) =F(r0 ) for decay

F-bJ
or =F(r0) b i  for reflectivity.

b2

For SH waves the form becomes

v(r ) = F'(r. ) [b, for decay
[b- 3 -v.

or = F'(r 0 ) [-bj for reflectivity.

The quantities b,, b2 , and b 3 are constants.

The analytic velocity profiles in the last inhomogeneous

layer specify the velocity up to the center of the earth.

They need only accurately model the P and S velocities, however,

up to the maximum depth that rays bottom in the ray parameter (p)

domain needed for the solution of a particular problem. The

velocity profiles may have multiple turning points but only

one turning point may exist in this p domain. Because radial
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inhomogeneity and sphericity allow rays to have turnng points,

the last layer automatically radiates seismic energy back

towards the surface with the decay boundary conditf -. 'inth

the reflectivity condition applied to the last laver, only

waves reflecting from or bottoming above the !as-: a:er reach

the surface.

The reference radius r, can be imagined to be far below

the lowest level for which rays turn in the p do.ain of interest.

A particular r0 need not be specified because the functions

evaluated in r0 cancel in the subsecuent solution prccedure.

Including the free surface and decay boundary conditions

in the general solution form of (9) gives

(r _l + K(a,&)y(U1dr (14)
(a rn FL bn1 2-J r

for P-SV waves, and

[W(a) K'(a,rn)Fn (rn) Ib f K' (a, )' (&)d (15)
0 n n n- 31 +ra

for SH waves. The unprimed and primed fundamental matrices,

propagators, and source vectors correspond to the _-S% and SH

cases respectively.

Solution in a Layered Sphere

Multiplying (14) by Fn  (r )K(r a) and (15, --',
2=n n-l~ ~n

F' n (r nl)K' (r ,a) and rearranging terms gives

[b R (a) FG2
[a= R- + G2  (16)o PG 3

for P-SV waves, and
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EblO + [C-,J (17)

for SH waves, where

= 1 Fs ()iC )d4 (18)
GI r s

G _ -1

G' S F' M y'M d&
2 f :S

r s

R = F Cr )K( a=n n-1 rn-,a)
(19)-1 -i) ( , s

S_ F (r _9k(r r~= --n (n-1 = n-i'

and

K(rn ,a) = K (rn,rn 2 ) .K(r,,a)n-l ---- - I "-l n-2 I

(20)

K(rn l s) = Kni(rnn 2 ) ... Ks+l(rsl s)sl (s)

R' S are defined analogously from the primed fundamental

matrices and propagators. The sbuscript s refers to the layer

index of the source layer, rFs denoting the radius at its lower

boundary (see Figure 1).

Solutions of equations (16-11) for the radial functions

U(a), V(a) and W(a)' are

TI- G R 2
G2 R32 3 R32

U(a) = (21)
2R 32 3 12

_Adwdd A
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-1 -1

V (a) GR 3 1  - G 3RI2  (22)V~)= -1-1 _1 -1 22

R1IR 3 2  - R31R12

G'
W(a) - (23)R1

where R.. denotes the ij-th element of R

EVALUATION OF PROPAGATOR PRODUCTS

Care must be taken in the evaluation of the propagator

products of equation (20) not to lose precision from the sub-

traction of large quantities of nearly equal value. Knopoff

(1964), Dunkin (1965), and recently Abo-Zena (1979) have shown

how to avoid this difficulty in models having planar homogeneous

layers. All of these methods propagate a matrix of minors of

the inverse fundamental matrix. The methods used by Abo-Zena,

however, free the layered model from any constraints on its

total thickness. Because the precision problem also exists

for models composed of radially inhomogeneous layers, the matrix

methods developed by these authors can similarly be applied.

The R.. Elements
13

The elements R.. and R.. in (21-23) may be written as13 ij

-000
R1 2 EpE

22
t0J (24)
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R 3 = E SVK (24)

R- E 11H = 0SH'I

where the row vectors Ep, ESV, ESH are dete_ied by

E p 1 , 0 ,0 ,0 F __ (r n I  r n _ F7 - (  3 ( 3 ) ( 3 )= = ~,3 g ,

_: -- (3)]
,-r pg 9rn_ 1

-1

ESV [0,0,1,0) Fn  (rn ) =

(25)
n~l v(3) 3 (3) 3 "

r n-1 [n -i]3nh ,-Ah ,-r p,-h 3

r n-

E [1,0] F- =
''H =n (n-i1

n 1/2 V  (3) '/2 (3)

rn [1/ -i h , - h ]
-n--

Because the elements R.: do not depend on the :rcer number m

of the spherical harmonics, they7 may be move- ctside of the

m summation when (21-23) are substituted in equation (1). It

is then convenient to perform the su-ation ever - of the
pB G and G'C -hie=e cuantitiesproducts G aPs:, G P GIB n , G 3 B-n

may be written as:
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m _[G Pm + G B ] =[!,0,0,03S (s r£  S Kti I
m=-n -n=

n m M_~
I [G P + G B ] = [0,0,1,0IS 1(srr E -_-, t = "

m=-n 3 nn =-SV
(26)

G'C = [l,0,0,0]S' (s' s') e + s
m=-n 6i --

Appendix B defines the column vectors s_, s-, s , s' and

s'¢ for generalized earthquake and explosion -oint sources.

t and t' are the sums of the column vectors defined in equation

(B7) in the vector directions r,6, and e-:

t =s r + s88- + s_-r--

(27)
S= e- + s

The Displacement Representation

The theorem for the transpose of the pro-uct of matrices AB,

(A B) T B TAT (28)

and the fact that the transpose of a scalar leaves it unchanged,

imply the identities

E Kt = t K E

E t = tTRTE T
- - -SV

(29)

0 lO I)TE TE K[1 = [1,,Oo]_

Esvls 0 [1,0,0,0]ET-sT
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The transposes of t and t' are taken as

T = T T Tt r + se + s-r.(30)

IT  T, e + s ,

T
etc. are now row vectors. Using equations (1), (21-24)

and (29), it then follows that for a generalized point source

and for a model described by radially inhomogeneous layers,

the displacement u can be written as

-j ESV T E K1

Tee slat o n h s b e e 0e t a n i e l (31)

1965).

-SH='t
+ wdpdw

The n sumrmation has been converted to an integral over p by

taking the first term in a Poisson transform (e.g., Nussenzweig,

1965).

Matrix Multiplication Scheme

T - TThe matrix [E E - E EP] is an anti-symmetric=P -sv -sv -matrix of minors of F - of the form

TE - KT EP (cont'd) (32)
I ~Sp in sv~p
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r0 d d d
2 j 2 3

rn- -- d 2  ((3)h(3) 32)
n-i -d 2 ]d 0 d s  (con,' d)

d, d 2 -d S 0

where

d = -(A 2 + B2X)

d = (r pA + Bn )

d3  S aI (33)

d 5  = (r + rp)

If the reflectivity instead of the decay boundary condition had

been used in the last layer, the Airy function Ai(-ze
- i 2r/ 3)

would replace Ai(-z) in the definitions of the vertical slow-

nesses appearing in the quantities d..

All elements of Yn are evaluated at the boundary of the

last layer and in the analytic velocity profiles of the last

layer. Evaluation of the P-SV terms in the brackets of (31)

involves a successive redefinition of a Yi matrix at each

i-th higher layer boundary starting at the lowest layer boundary:

-n-1 - nY-l n Kn-l

KT
Y=n-2 K n- 2n-IKn-2

TXl = K1  X~

Each newly defined Yi matrix remains an antisymmetric matrix.

Only five independent terms are needed to specify each new

(Menke, personal communication).

-€
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The denominator for the P-SV term is given by the inter-

section of the first row and the second column of the result
for Y.i The numerator is calculated by first evaluating the

product

v = KY K (35)
-s-n=

right multiplying Xs-i by E (rs ,r s) ...E(r ,a), and left

multiplying the second column of this result by the row

vectors of tT.

The methods of Abo-Zena (1979) can be applied to evaluate

the products of equation (31) for the P-SV term and the products

EsMN, __' for the SH term. These methods decompose the

propagator matrix of a layer into a sum of matrices of differing

numerical order whenever the depth eigenfunctions are exponentially

small or large. In an inhomogeneous layer this happens at ray

parameters for which a P or S wave bottoms far above the layer.

At such ray parameters only tunneled energy can reside in the

layer. Because tunneling is a frequency dependent phenomenon,

a particular exponential decay value depends on frequency.

When this situation occurs in the i-th layer, define the

positive integers m. (j=l-4) and the complex numbers A. (j=l-4)

with magnitude of order 1 from the products

g (1) (r i)g (3) (r i-l) = em'
(3) (i) _

g (ri)g (ri) = 2 e-m (36)

(r)h (3) (rm) e

i--mh (r ih)h (r i 1) eh ( 3 ) ( r i)h(1) ( r i I )  4 •-

The I. and m. values caii be calculated and returned by an Airy

function subroutine based on the exact and asymptotic formulae

given in Abramowitz and Stegun (1964). (More detailed references

are given in Appendix A.) Next define the matrices v.h. from
3-D-

the product of column vectors v. and row vectors h.. After the!-
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exponential scale factors of the fundamental natrices are

removed, vj is given by the jth colur.n of 14e (r.) matrix and

h. by the jth row of the F. (ri_) matrix. The propagator K.

can then be written as

K. = vh ~em I + v h e -m2 + v h em  -v h e (37)
1, 2!2 33 -Ai

In Abo-Zena (1979) such a decomposition of K is invoked

to varying degrees depending on which of three diferent

relations exist between phase velocity and layer velocities.

For inhomogeneous layers these cases are restated in terms of

the exponential behavior of the Airy functions used in the

definition of the fundamental matrices:

I. mi = n2 = m 3 = m 4 = 0

All radial eigenfunctions behave either as sinusoidal or phasor

type functions having a magnitude of order 1. Compute K. directly
"=i

and determine Yi from

Y. = K T Y (38)

II. m3 and m, = 0, m and/or mrC 

A matrix og may be defined as

og = v113 + v h4

Compute Yi from

--i"") Yi+l2 g  + - (h T + h2 _2v T )Y i_ (N-_.. h .. vh

+ em {[hTvT + (og) T]Yi+ l ( v- h + o c) - T3) Yi+l O2 (39)

" e-m2hTvT + ( ] i+I(v h 2 + oc) - (oo) 0Y

III. Mi and/or m2 3 0, r"3 and/or in 0
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Compute Y. from
-1

T T T T "TT I= (hT + h+ )v (v h + vh 1 ) (h'v + hv )i+l(Vh + 3h)~--a + -- i+l -2-2 -3-3 -L-4.

+ e (+m3) (hTvT + h.TvT)y v + vh,)-1-1 !-3- - i+l(-3-3

+ e mi-mn) (h'v + hTvT)li+l (Vh4 + lh,) (40)

+ e(m3-ml) T T + hT T (V L,3h + v h2 )
" e( L 2 ! 2 +  3 L 3, ) ='i + l  -3- - 2

+ e - ( m + m s) (hTvT + hTvT)Y. _(v h + v h
2-2 ---- -2-2

All of the symmetries noted by Abo-Zena can be exploited in

the evaluation of the matrix products of algorithms I-III.

The propagator products in the SH calculation can be

evaluated using simpler analogous algorithms for the decomp-

osition of the SH propagator. New row vectors ESM are given

by right multiplying by the propagators.

At large mi the product having the largest exponential

factor in algorithms II and III dominates the final result

for Y. and the other terms may be ignored. The exponential

behavior assumed here is based on the travelling-standing choice

for the Airy functions used in defining the fundamental matrices,

Ai(-ze i2)/3 and Ai(-z). The displacement representation

given by (31) equals that given by substituting Ai(-ze
- i 2 r/3)

for Ai(-z) in (31) in all but the last layer. Thus the response

calculation may alternate between either choice of independent

Airy functions when convenient. If the travelling wave choice,

Ai(-ze 2r/3 ), had been used, the propagator in algorithms

II and III would be dominated by exponentially large terms

of nearly equal magnitude and opposite sign whenever the para-

meter N defined in the Appendix A equaled ±l. In this case the

travelling-standing choice avoids the numerical difficulties

of the travelling choice.

Algorithm I always involves fewer mathematical operations

than II and III if all of the terms in 1I and III are cal-

culated. Branching between the algorithms can be allowed at
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non-zero values of mj, maximizing the use of algorithm I.

Care must be taken, however, that the branching value of n. is
3

small enough that precision is not lost in alcorithm I.

The exponential scale factor accur.ulated from each redefi-

nition of Y. cancels in the numerator and denominator of the

integrand until the boundary below the source layer is

reached. The scale factor for propagation below the source bound-

ary can thus be discarded. The scale factors separately ac-

cumulated by the numerator and denominator for propagation through

and above the source layer can be saved and used to scale the

final result for the integrand.

Only tunneled energy can reside in a layer at ray para-

meters corresponding to rays bottoming far above the layer.

These p points occur whenever the parameter N in the Appendix

equals ±1. The parameters IWT.1 and ILT7, defined in Ap-

pendix A then serve to quantify the tunneling phenomenon. When

the tunneled energy in a layer is sufficiently small for both

P and SV waves ( Iwtri>10 and IWT,1>I0 ), the propagator for

the layer can be ignored and the Yi matrix redefinitions begun

in the next higher layer.

EX.MYPLE USES OF GENER-7i-L SOLUTION FORM

I. Inhomogeneous Unlayered Sphere

As an example of the generality of (31), consider an

explosive point source at radius rs in an unlayered inhomogeneous

sphere with radius r.. For the radial displacement component

calculate
M

n m n GIR;'PnI_ U(rs )P nr 2G 1 _ _ - (41)
) -= - -' - -1

z-=-n s m=-n R1 1 R3 ?-R3 RI 2

where for an unlayered sphere

n m[l000rF?

I = nrOOO]sr and Rj = (r). (42)
m=-n
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Next evaluate the source vector s from the radiation
-r

factors defined in Appendix B. For an explosive point source

the moment tensor is isotropic, giving in equation (BI0)

L= L2 V = L LS L = LS 0

P P sv sv S
(43)

= 's M

P Ps

In the far field, the non-zero radiation factors then become,

from equation (B9)

F M0
F = P = -- Pn (cosA) (44)

5

Substituting sr using equations (B9) and Fij(r0 ) using

the definition of the inverse fundamental matrix in equation (10b)

gives

_,Wp 2 c, g(3) (rP(OA
Ur-f PS dp (45)

r2rr/0(A - 2r 2 '-2 ]g(3)()

p

for the radial component of the Fourier time transform of dis-

placement. (n = wp-1/2) , and n are evaluated at r0 . The

denom nator factor,
2 2,1 - 2r 2 4p

can be recognized as a form of Rayleigh's dispersion function

with generalized vertical slownesses substituting for the more

familiar plane wave cosines.

This solution must possess a ray-mode duality equivalent

to that of the layered half space described by Pekeris (1948).

To demonstrate this duality, reduce (45) to either (1) a

sum of modes of free oscillation of the sphere or (2) to a sum

of individual displacements due to all possible seismic rays

interacting with the free surface.
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A modal representation can be derived by omitting the

Poisson transform of the n summation and evaluating the inverse

Fourier transform by contour integration, giving a double su r=ation

over radial order number n and poles n of Rayleighs function

in complex freauency (e.g., Sato et al., 1963). An alternate

mode representation can be derived by the spectral method, which

evaluates the p integral in (45) at the discrete frequency points

needed for the application of a fast Fourier transform. The

p integral is then evaluated by contour integration, which

together with the inverse FFT results in a double summation

over frequency wn and poles ipn in the complex p plane.

The validity of ray theory improves with increasing

frequency. A ray representation can thus be most simply

illustrated by incorporating a high frequency approximation of

the radial eigenfunctions in (45). At sufficiently high

frequency and small ray parameter, the first term in an

asymptotic representation of the Airy functions can be used to

approximate the radial eigenfunctions. This approximation,

which is equivalent to the WKBJ approximation, can be used to

expand the integrand of (45) into a sum of phasor terms that

can be identified with seismic rays. The displacement gen-

erated by each ray can then be determined by either the

spectral method combined with saddle point integration (Richards,

1973), or by Chapman's (1978a) technique of WKBJ seismograms.

II. Inhomogeneous Layered Sphere

Again consider a buried explosive point source but now

evaluate the matrix products of equation (31). As a specific

example take the layered earth model shown in Figure 2, and

an explosion source at 1 km. depth. Radial displacement is

calculated by the spectral method using a real fast Fourier

transform:

N
u (t, ) = Re fCe- itf Npsv_ dpde (46)r r DpdSV
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Dp .sv 8r Fo'

Dp~sv 8cors) s

(3) (1) )T TVT T 0
[-g (r ) ,g (r s ) ,0,0] [E E - E sEp]

[1,0,O,Q]:KT [ETE T E K

where r is a contour in the complex p plane.

The matrix products in (46) are evaluated at points in

the complex ray parameter plane, applying the methods of

Abo-Zena (1979) as previously described in the section

EVALUATION OF PROPAGATOR PRODUCTS. The approximations to

the radial eigenfunctions at each layer are constructed to be

continuous functions in the complex ray parameter plane

(see Appendix A), allowing the integration path to be deformed

off the real p axis. Deformation of the p contour below the

real p axis reduces the large oscillations of the integrand

associated with poles on and near the real p axis. Numerical

integration thus becomes a computationally efficient procedure

without invoking an unreasonably attenuating earth model to

move the p poles off the real axis.

Residues at poles in the first quadrant of the p plane

(Figure 3) describe seismic radiation at the free surface.

Application of the reflectivity boundary condition to the lower-

most layer boundary produces poles in the fourth quadrant whose

residues describe transmitted radiation into the last layer.

The integration contour in the p plane must therefore be

deformed such that these fourth quadrant poles are excluded

from the response at the free surface. Application of the

decay boundary condition in the lowermost layer eliminates

the fourth quadrant poles at the expense of packing poles more

densely along the real ray parameter axis at small ray para-

I.- _________ ________-- -___________________



89

meter values. The reflectivity boundary condition is thus pre-

ferred for the deformation of the left end of the contour

across the real ray parameter axis.

Provided that the Legendre function P (cosL) is not decon-n
posed into horizontal travelling waves as in equaticn (B1),

the integrand vanishes as p goes to zero and the p contcur may

end at the origin as in the antipode problem described by

Rial and Cormier (1979). In the distance range for which sample

seismograms were synthesized (75-150 km.),near vertically

incident body waves, however, were not important in the complete

response. Rays having take-off angles more vertical and bot-

toming at depths deeper than the direct P wave reach the

receiver only by suffering partial reflections from layer

boundaries. Such arrivals are consequently much smaller

in amplitude and delayed in time relative to the earlier portion

of the waveform. These arrivals can be excluded by deforming

the left end of the contour across the real p axis into the

left portion of the first quadrant where the integrand decays.

The p point at which the contour may be so deformed can be

estimated from the lowest bottoming depth of the direct P

waves in the distance range of calculation. The range of

distances, frequencies, and ray parameters needed for the syn-

thetics shown in Figures 4-5 required the inclusion of only
(2) ,-o fteLgnr

the Q travelling wave in the decomposition of the Legendre

function, and the left end of the integration contour was

deformed across the real p axis.

Decay of the integrand of equation (46) also occurs along

the real p axis at large values of p (e.g., Frazer, 1977).

The integrand decays more rapidly, however, by deforming the

right end of the contour upward into the upper right portion

of the first quadrant around the last ray parameter pole

(Figure 3). The residue at this pole accounts for the funda-

mental Rayleigh wave. For the earth model chosen here the

position of the fundamental Rayleigh pole is well separated

in the complex p plane from all other poles. It is thus

convenient to evaluate the displacement response in two
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stages (Figure 4), separately calculating the response due to

the fundamental Rayleigh pole with one contour and the response

of all other modes with another contour.

Figures 4-5 show unfiltered traces of synthetic displacements.

The contour deformations shown in Ficure 2 do no: introduce

truncation pulses common to methods that apply a phase v-locity

filter to the contour integration. The earliest disturbance

in the wave-forms represents the direct P wave. Some numerical

noise occurs at the Nyquist frequency (2 Hz.).

The real axis contour can be alternately deformed to

completely enclose p poles in the first quadrant. The steps

in the contour deformation would be identical to those described

by Ugincius and Uberall (1968) for the problem of the elastic

cylinder. The spectral response could then be evaluated by

applying Cauchy's residue theorem to the p poles. The mode

sum obtained would be analogous to that obtained by Harvey (1979)

for planar homogeneous layers.

In either the numerical integration method or the mode

sum method most-of the layer calculations can be saved and catalogued

for use at different distances with different sources at different

depths. To achieve this economy in the numerical integration

method, catalogue the d2 element of Y matrix and all elements

of the Y matrix at the frequency and ray parameter points

needed for the FFT and p integration.

MODEL SPECIFICATION

A spherical earth model need not be first flattened before

the inhomogeneous layers are specified. The zero order asymptotic

solutions account for the curvature of layer boundaries as well

as inhomogeneity in the layers. Formulae for a flattened model

are redundant. The expressions for T and Q needed for the calcula-

tion of Airy functions in Appendix A are equivalent to those for

a spherical model; P (cosA) is approximately replaced by
mn n

(kx) J (kx) with the use of Szegos (1934) asymptotic expressionm
for pm. (See for example Chapman, 1973, or Miiller, 1977.)

n
The asymptotic solution used in this paper restricts the
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velocity profiles to having only one turning point. The presence

of a low velocity zone would thus preclude an earth model having

only one layer (a simple inhomogeneous sphere).

How accurately do the zero order asymptotics model the

radial eigenfunctions of an inhomoceneous layer? The accuracy

depends on both frequency and the magnitude of boundary curva-

ture and first and higher order radial derivatives of density

and elastic moduli. Higher frequency allows larger magnitudes

for curvature and radial derivatives. For a given velocity

profile the error can be estimated from either the higher order

terms in the radial component of the potential equations

(Richards, 1976), or from the first higher order solution term for

the fundamental matrix obtained by Woodhouse (1978). With the

use of smooth relatively linear velocity gradients, the zeroth

order asymptotics can be used in the frequency band (0.2 - 10 Hz.)

with a relative error in a radial eigenfunction bounded by 0.1%

at 0.2 Hz. for a velocity gradient of 0.1 sec 1.

Asymptotic series type solutions, however, fail to properly

account for narrow angle reflections from regions having rapid

velocity variations over short distances (Chapman, 1978b).

Layer boundaries should thus be introduced at points best

described by a first order discontinuity such as the moho. If

the errors in the zeroth order solution become unacceptably

large in a given frequency band, then the layer should be broken

up into thinner layers of weaker velocity and density gradient.

Inflections and kinks in the velocity profile, expressed by

a large value of second and higher order radial derivatives,

should be avoided. In many practical applications at 500 km.

or less distance, no more than four to five inhomogeneous layers

should be necessary to describe the velocity variation from

crustal layers, high velocity mantle, and low velocity zone.

CONCLUSIONS

The preceding has demonstrated the practicality of including

an inhomogeneously layered model in a calculation of the complete
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displacement response at short distances. The isolation of the

fundamental surface wave pole in the complex p plane allows the
synthesis, if desired, of only the fundamental surface wave mode

by numerical integration.

When only a small subset of body waves at large distances

is desired, the inhomogeneous layer matrices and response function

calculation can be modified for a reflectivity type calculation

analogous to that of Fuchs and Mdller (1971) for planar homogeneous lay-

ers. For such subsets of body waves it would not be difficult to

extend the decomposition and multiplication scheme used for the

evaluation of the layer matrix K to the boundary matrix Qi

used in the reflection matrix method described by Kennet (1974),

where

r =)i(ri-1)

In this method the fundamental matrices Fi- and F. must be
defined such that they can be partitioned into four 2 X 2 matrices

each of which can be associated solely with up- or down-going

waves.

In any of these applications the layer inhomogeneity

minimizes the number of layers needed to describe the response

function and thereby the computation time required to synthesize

displacement. The zero order asymptotics adequately model the

behavior of the radial eigenfunctions of an inhomogeneous layer

in the frequency band (0.2 - 10 Hz.) for the velocity gradients

common to wide regions of the crust and upper mantle.
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FIGURE CAPTIONS

Figure 1 Layering index scheme.

Figure 2 Earth model based on the southern California crustal

model of Kanamori and Hadley (1975) and model CIT 109

of the upper mantle (Archambeau et al., 1969).

Figure 3 Paths in the comDlex ray parameter plane for the

evaluation of displacement in a spherical earth model

having a single discontinuity at which the P and S

velocity increase discontinuously. Position of poles

in the P-SV response are shown schematically by x's.

Rayleigh poles lie near the real axis. Franz poles

emanate upward and downward from the real p axis at

approximately ±60 degree angles. The poles of the

P-SV response of the earth model shown in Figure 2

differ from this form only in having additional

Franz poles in the first quadrant associated with

higher layer boundaries.

Figure 4 Displacement calculated from the spectral response

(0 - 2 Hz.) given by the numerical integration along

the contours shown in Figure 3. Polarity is reversed.

Source was an explosion at 1 km. depth. Time domain re-

cords were obtained by inverse FFT using 128 frequencies.
Figure 5 Synthetic displacement at 75 to 150 km.
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APPENDIX A: RADIAL EIGENFUNCTICNE

Practical Evaluation of Airy Functions

The radial eigenfunctions are defined in te_--s of the

Airy function Ai:

g(1) (r / o6 T V4 i2r,/3
g ( Ai(-Z e),

g(3) ( =6 1 Ai(-z
9~A (-z) , Q7

or (Al)

6 1ci/  -i2r/31 Q Ai(-z e ),
cit

W 1/6 Q/ Ai(-z e i2r./3)

h ( 3 ) (r) = 1/Ai(2 z )

(3)')1/6 e-2 /3

or--L Ai(-z

r Tr/z = (3/2wT 2/3)

= (3/2wT a) 23

T !r Qdr f = fr r

P P

1(; 12 /l p2 112

The exact radial eigenfunctions of an inhom:zeneous layer

are analytic functions in the complex p plane. "Ie fractional

powers used in defining the arguments cf the Airy functions,

however, place branch cuts in the complex p plane cf the asymptotic

approximations of the radial eigenfunctions. These branch cuts

-4 -_ _ _ _ _ _ _ _ _ _ _
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'27rNmay be removed by multiplying wT by e' 2  
, where N=0, ±i

depending on the phase-of the complex 7 and ray parameters p.

Cormier (1976a) discusses how N may be determined in a complex

velocity profile when subroutine packages for Hankel functions

or order 1/3 calculate the Airy functions. The Airy functions,

however, can be most efficiently calculated with the exact and

asymptotic formulae given in Abramowitz and Stegun (1964).

P.G. Richards (personal communication) has used this approach,

patching the exact and approximate formulae together when

IWTI = 3.5. The subroutine LANGER written and tested by Richards

together with an improved algorithm for calculating N (a portion

of his subroutine ROMTAU) have been used in the calculations of

this paper. The integers m. needed in propagator multiplicationJ
scheme of equations (39-40) can be constructed from normal LANGER

output.

Practical Evaluation of the Delay Time T

The integral defining T may be (1) analytically evaluated

using the velocity profile v = arb in each layer (Richards, 1973,

1976; Choy, 1977; Frazer, 1977; Mondt, 1977); (2) numerically

integrated in an analytic velocity profile given by a polynomial

in radius (Cormier and Richards, 1977); or (3) analytically

integrated by parameterizing the logarithm of radius in the

Bullen parameter (in = r/v(r)) (Woodhouse, 1974).

Method (3) is equivalent to the parameterization described

by Cerveny et al. (1977) and used by Garmany, et al. (1979) for

flat inhomogeneous layers. It is usually the most computationally

efficient. For the calculation of the seismograms in Figures 4-5,

each layer of the velocity model in Figure 2 was parameterized

using method (3) with

ln(r/r0) = a + b(n/n 0 )
2  (A2)

where r0 and n0 are the values of r and n at the top of the layer.

The constants a and b were determined from te values of radius

and velocity at the boundaries of the layer. The delay time

ri
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was then given by

T(p) = 2r,[1 - (p/710 )2
'/2 b/3 (A3)

Incorporation of Attenuation

Incorporation of attenuation in any of the above methods for
computing T can be accomplished by a complex velocity profile

(e.g., Cormier and Richards, 1976). When a complex velocity

profile can be specified by the form

(ir) = v0 (r)-(l + E) (A4)

method (3) reduces to the form

= (1 + E)- 1 u(p.(l + 9)) (A5)

where E is a small complex number constant in radius, v0 (r) a

real velocity, TA the delay time in the attenuating layer, and

TU the delay time in the layer having the real velocity profile

evaluated at the ray parameter p=p-(l+9). ro include the dispersive

effect of linear attenuation mechanisms E must have non-zero

real and imaginary parts, each of which is frequency dependent

(Futterman, 1962). If dispersion can be ignored in the frequency

band of interest, then Cmay be taken to be pure imaginary and

frequency independent.
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APPENDIX B: SOURCE RADlIATION

Si.mplification of Source Radiation Prop~erties

In the computation of the complete response function

it is convenient to crmpute the summation over order number

m of products of the source factors G.i and vector spherical

harmonics. Three such combinations can be rewritten as

follows:

[G P + G B] [1E,0,0,0]s- (sr + s, e +y)
m=-n -

n m
I [G P + G B I=[0,0,1,0]s- (s r + s e+ s) (Bl)

rn=-n n -r- -8.r

I GIC = [l,O,O,O]S'_ (s'

m=-n _n

Equation (19) defines the matrix S as the product of pro-

pagators. The column vectors sr s s ,-' ,~e and s now

emphasize the major properties of the source radiation pattern and

are defined by

n fr 0  -m

r I F (,),(,)dYm
m=-na

(B2)
m

_()y(~d~ _g-= fn(n+l)] I

m=na

m
nl r F/1()()d YnV

'I m=_S~L'~)()~~ [n(n+l)]2/

m=n fr __

a



108

= SI F "  s'
5 c d - -/ [n (n+l)] (B2)

m=-n J (cont d)a

Soecification of a Seismic Point Source

The expressions in equations (B2) can be simplified by

specifying the seismic source vectors y and y'. Consider a

seismic source specified by the Fourier time transform f

of a vector f of body force density acting at a point. As in

Saito (1967), y and y' are determined from an expansion of

in vector spherical harmonics:

00

'Y M 0 'Y'' 0 ~ (B3)

S f S

and fT determined from
with f I f, n e

n 
T mfSm + fSm Tm

n=0 r=-n n n n

= f 0 f.p*m sinededo27 (B4)

0 0 nl

2 = f 0 f B*m sin6dfdOd f. C* sined4do,a o n 0 0 n

*denoting the compex conjugate.

f can then be described with the zeroth order (in frequency)

moment rate tensor M by

f = -M-V(r - r ) (BS)

" q ... . . . - . . . --S
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Gilbert (1971), where 6(r - r s) is a three dimensional delta

function given at a point with radius vector r In spherical-s
polar coordinates,

6(r - rs = 6(r-rs) 6(e-6 0)6(¢- 0 ) (BE)

r2 sine

A distributed source can be represented by a point source

with the device of multipolar expansions (Archambeau, 1968).

A sufficiently accurate approximation of the radiation pattern

of a distributed source a high frequency, however, can require

the inclusion of many terms in such an expansion. The equivalent

definition with a moment tensor requires many higher order moment

tensors (Gilbert, 1971) together with higher order spatial

derivatives of the delta function (Hudson, 1969). The radiation

factors given here consider only the first term in such an

expansion, a source representation always valid at sufficiently

low frequency. The same solution procedure may be used when

higher order moment tenscrs are included.

The properties of M have been discussed by Gilbert (1971).

By conservation of angular momentum, M must be a symmetric

matrix (Mre = M1 r, Mr = M = 1€ 4. For a point

double couple, quadrapole source M must have zero trace

(Mrr + Mee + M = 0). For a pure explosive point source,

M must be isotropic, i.e., all off diagonal elements are equal

(Mre = Mro = MO = 0), and all diagonal elements are equal

(Mrr = Mee M = M0). An exposion having some tectonic stress

release may be represented by an M in which the off diagonal

elements are non-zero. The elements of M have been defined by

Gilbert (1971) and Aki and Richards (1980) in terms of earth-

quake fault plane parameters.

Results for the Source Radiation Vectors sr' etc.

Simplified expressions for Er etc. may now be found from



.1 1.13

substituting equations (l0b) , (B3) , (B4), (B5), and (B6) into

equations (B2) and applying the addition theorem for vector

spherical harmonics. For examples of the simplification

procedure see Singh and Ben-Menahem (1969) and Ward (1979).

In the results that follow, A is the epicentral distance.

The azimuthal angles C and B are defined by Singh and Ben-

Menahem for a generalized co-ordinate system at the source

and by Richards (1978) and Ward (1979) for a north-east-down

(NED) co-ordinate system.

11-/' ipVT -()P|
Ir= (3' /

8 r

ss (1 SvJ

8 rsL ps( S V

sv
(B7)

-g ,()" 1
s-= inCw- /2ip/P -3

sv

_s - sinCw"- 2 [p (3) sH

5' = J(i ScosC #2- h(3 SB

8 s P/s hS

) (3)3(1)

g(3)g (1i) h(3 and h ( I  are evaluated at the source radius

sic ______ V,-: (3



rin the analytic velocity profiles of the source laver.
The radiation factors consist of far field terms Q F

'-%'V, XSH~ and near field terms (N , NSv, - SHi)

F' N

F" N

ISH = -SH + sH

~SH 2= Fks + Si

with

[p2r2L V + 2 L2 PA( L/ip
1P [21_L 1/a l/LPP(cosL) 2cp/rLPI(o)/ip

F~kp = [P2/r2  P 2 /c P P

/r L, + -/SLI COA & L P (cos01A) p

F' 2SV SV
Xsv= (Q~ _ 2 /r 2 )L P1 (COsA)/(jwp) - n~p/r L2 P (COSA)

(B9)

2SH= nL 1 P (COSA) - p/r L2 pl(COS&)/(iWp)
si SH n SHj

2RSE -L P (COSA) - p/r L2 P1 (cosA&)/(iwp)
SHi SH n

Nj = 4 p2/r 2 L~ 4Coth p, (COSAl)/(W 2p2)

4- ~ ~ f -P ____ PS____________ n__
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Ts -,np/r L4 Co~ C~l WP2
PS nl

(39)

NI(cs 2 
-pL cot 2(L) 1 (oL2)/(iwn~p1

S - 2nL',,cotAP (CoS)/(W2P 2) - p/r L2 [2cotLP (CoSL)(WP) +

(2csc2L - 4 Cot2L)p'(CoSL)/(iW3p)
n

where p independent factors are given by:

I. = M cos23 + M sin2B + M sin2E M
Li e e 4)40 rr

L2 = M cos3 + M s

L3= M r

Lsv

L2V L (BlO)

SH ro - resl

L =1 sinB(M4 - M U)2 + cos2BM

4 cos2BMe + 2M sin2B + 2M~ sin2 z

The radiation factors defined remain valid as Lvanishes. For

bnot near 0, it is possible to divide P n (cost) into travelling

wave functions Qn (1(cosb) and Qn ( costs),

PnCOA)= Qn (cosb) + Q (2) (OL Bl

For large wp these behave asymptotically as
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(1)
Qn(2) f 1 ±i[wp-,/4] (B12)-"n 2wpsin e(B2

a P
Nussenzweig (1965). With PI= and equations (Bl-B12),

n
it follows that

Pn(Cos&) iWPPn(COSA). (B13)

Thus, for large wpA the far field terms behave like P (cosb), and

the near field terms like Pn(CoSA)/(wpA) and Pn (COSLi)/(wp).

The radiation factors in equations (Blo) are essentially

the same as those given in Aki and Richards (1980) and Ward (1979).

In the far field only three p independent factors are necessary

to describe the radiation of P waves, and two p independent

factors to describe the radiation of SV or SH waves. In order

to fully account for the radiation pattern of the source in the

near field, however, the 4 factor must be added to the results

reported in Aki and Richards and the Legendre functions not

divided into travellina wave functions near L=O.




